ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Sandro Pelloni, Edward T. Cheng, Mark J. Embrechts
Fusion Science and Technology | Volume 16 | Number 1 | August 1989 | Pages 53-64
Technical Paper | Blanket Engineering | doi.org/10.13182/FST89-A29096
Articles are hosted by Taylor and Francis Online.
Self-shielding characteristics for two aqueous lithium salt tritium-producing blankets for next-generation fusion devices are examined. The aqueous self-cooled blanket (ASCB) concept is a very simple blanket concept that relies only on structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low-technology, low-temperature environment for blanket test modules in a next-generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal, and tritium production. One driver blanket studied is the concept proposed for the Next European Torus (NET), while the other is indicative of the inboard shield design for the Engineering Test Reactor (TIBER II/ETR) proposed by the United States. It is found that no significant gains in tritium breeding can be achieved in the stainless steel NET blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten TIBER II/ETR blanket shows a 5% increase in tritium production in the shielding blanket when energy self-shielding effects are considered; however, it shows a drastic increase in the tritium breeding ratio due to heterogeneity effects.