ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Mohammad Z. Hasan
Fusion Science and Technology | Volume 16 | Number 1 | August 1989 | Pages 44-52
Technical Paper | Blanket Engineering | doi.org/10.13182/FST89-A29095
Articles are hosted by Taylor and Francis Online.
An analytical solution for the temperature profile and film temperature drop for fully developed laminar flow in a circular tube is provided. The surface heat flux varies circumferentially but is constant along the axis of the tube. The volumetric heat generation is uniform in the fluid. The fully developed laminar velocity profile is approximated by a power velocity profile to represent the flattening effect of a perpendicular magnetic field when the coolant is electrically conducting. The presence of volumetric heat generation in the fluid adds another component of the film temperature drop to that due to the surface heat flux. The reduction of the boundary layer thickness by a perpendicular magnetic field reduces both of these film temperature drops. The Nusselt number for constant surface heat flux increases from 4.36 for the parabolic velocity profile to 8 for the nearly flat velocity profile or slug flow. The corresponding increase in the Nusselt number for uniform volumetric heat generation is from 2.46 to 5.33. A strong perpendicular magnetic field can reduce the film temperature drop by a factor of 2 if the fluid is electrically conducting. The effect of nonuniformity of the surface heat flux, however, is to reduce the Nusselt number or increase the film temperature drop at the location of the maximum heat flux compared to the case of uniform surface heat flux. At the point of maximum surface heat flux with a cosine variation, which is very close to the case of a coolant tube in the first wall and limiter/divertor plate of a fusion reactor, the Nusselt number can be reduced from 4.36 to 2.7 and from 8 to 3 f or parabolic and flat velocity profiles, respectively. The effect of perpendicular magnetic field (or the flatness of the velocity profile) on the film temperature drop due to nonuniform surface heat flux is less pronounced than on that due to uniform surface heat flux. An example is provided to show the relative effects of these two film temperature drops in the thermal design of fusion reactors.