ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Bo Lehnert
Fusion Science and Technology | Volume 16 | Number 1 | August 1989 | Pages 7-43
Overview | doi.org/10.13182/FST89-A29094
Articles are hosted by Taylor and Francis Online.
The Extrap concept and its possibilities as a full-scale fusion reactor are reviewed. The toroidal Extrap configuration consists of a Z-pinch that is immersed in an octupole field generated by currents in a set of ring-shaped external conductors. This configuration satisfies the equilibrium conditions of an optimized compact fusion reactor in having closed field lines, fully axisymmetric geometry, a weak or nonexisting toroidal magnetic field, no need for a surrounding conducting wall, larger bootstrap currents than those in schemes with a dominating toroidal magnetic field, the possible option of normally conducting coils, and a high-beta value. Small- and medium-scale linear and toroidal experiments have demonstrated macroscopic stability at plasma temperatures and poloidal beta values of at least 40 eV and 60%, for electron densities of ∼1021 m−3, discharge durations of the order of 100 Alfvén times, and energy confinement times of ∼40 Alfvén times. The energy confinement time is almost two orders of magnitude longer than the growth times of the most violent magnetohydrodynamic (MHD) instabilities, and the Lawson parameter is ∼1.5 × 1016 s/m3. The stability appears to be explained by a combination of MHD-like and kinetic effects. However, further advanced theoretical methods, partly including unexplored areas, have to be employed in the search for a complete understanding of the experiments. An extrapolation to a full-scale reactor appears to be possible, but requires further investigation. Crucial parameters f or stability are the number θi, of ion Larmor radii contained within the pinch radius and the ratio of the magnetic field strengths generated by the pinch and the conductor currents. In the experiments, θi, ≲ 10, whereas the range 20 ≲ θi ≲ 40 is required for a reactor.