ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Robert C. Ward, Don Steiner
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 210-217
Technical Paper | doi.org/10.13182/FST98-A29
Articles are hosted by Taylor and Francis Online.
The impact and status of the cross sections for production of short-lived radioactivities in the intense high-energy neutron fields associated with deuterium-tritium fusion reactors is investigated. The main concern relative to these very radioactive species is that they may represent enhanced radiation sources not accounted for in typical transport calculations. These enhanced radiation sources may affect heat removal and shielding requirements. The status of nuclear data required to assess these issues is surveyed. Among the factors considered in defining the relevant reactions and setting priorities are quantities of the elemental materials in a fusion reactor, isotopic abundances within elemental categories, the decay properties of the induced radioactive by-products, the reaction cross sections, and the nature of the decay radiations. Attention has been focused on radioactive species with half-lives in the range from ~1 s to 15 min. Available cross-section and reaction-product decay information from the literature are compiled and examined. The evaluated data sets are collapsed using neutron spectra from three fusion reactor designs - ARIES I and II and the International Thermonuclear Experimental Reactor (ITER). The group-averaged cross-section sets are then used to produce neutron-spectrum-averaged, one-group cross sections, which are, in turn, used to produce decay heating reaction rates for each of the reactions. The decay heating rate is used as a measure of the radiation source strength associated with a given reaction. The decay heating reaction rates are compared against neutron heating reaction rates. Calculated decay heat to neutron heating ratios are required to be >10% in order for the reaction to be considered of importance for further study. The reactions of importance are identified as 28Si(n,p)28Al, with a ratio of ~10%, and 207Pb(n,n')207mPb, with a ratio >50%. The 28Si(n,p)28Al reaction could affect heat removal requirements for reactors employing silicon carbide as a structural material. The 207Pb(n,n')207mPb reaction could affect heat removal and shielding requirements for shield designs employing lead. Identified reactions of slightly less importance are 27Al(n,p)27Mg, 9Be(n,)6He, 52Cr(n,p)52V, 16O(n,p)16N, and 204Pb(n,2n)203mPb - all of which have ratios between 1 and 4%.