ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Robert C. Ward, Don Steiner
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 210-217
Technical Paper | doi.org/10.13182/FST98-A29
Articles are hosted by Taylor and Francis Online.
The impact and status of the cross sections for production of short-lived radioactivities in the intense high-energy neutron fields associated with deuterium-tritium fusion reactors is investigated. The main concern relative to these very radioactive species is that they may represent enhanced radiation sources not accounted for in typical transport calculations. These enhanced radiation sources may affect heat removal and shielding requirements. The status of nuclear data required to assess these issues is surveyed. Among the factors considered in defining the relevant reactions and setting priorities are quantities of the elemental materials in a fusion reactor, isotopic abundances within elemental categories, the decay properties of the induced radioactive by-products, the reaction cross sections, and the nature of the decay radiations. Attention has been focused on radioactive species with half-lives in the range from ~1 s to 15 min. Available cross-section and reaction-product decay information from the literature are compiled and examined. The evaluated data sets are collapsed using neutron spectra from three fusion reactor designs - ARIES I and II and the International Thermonuclear Experimental Reactor (ITER). The group-averaged cross-section sets are then used to produce neutron-spectrum-averaged, one-group cross sections, which are, in turn, used to produce decay heating reaction rates for each of the reactions. The decay heating rate is used as a measure of the radiation source strength associated with a given reaction. The decay heating reaction rates are compared against neutron heating reaction rates. Calculated decay heat to neutron heating ratios are required to be >10% in order for the reaction to be considered of importance for further study. The reactions of importance are identified as 28Si(n,p)28Al, with a ratio of ~10%, and 207Pb(n,n')207mPb, with a ratio >50%. The 28Si(n,p)28Al reaction could affect heat removal requirements for reactors employing silicon carbide as a structural material. The 207Pb(n,n')207mPb reaction could affect heat removal and shielding requirements for shield designs employing lead. Identified reactions of slightly less importance are 27Al(n,p)27Mg, 9Be(n,)6He, 52Cr(n,p)52V, 16O(n,p)16N, and 204Pb(n,2n)203mPb - all of which have ratios between 1 and 4%.