ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Tomoyuki Johzaki, Kunioki Mima, Yasuyuki Nakao, Tomohiro Yokota, Hiroyuki Sumita
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 428-436
Technical Paper | Fast Ignition Targets and Z-Pinch Concepts | doi.org/10.13182/FST03-A288
Articles are hosted by Taylor and Francis Online.
To investigate core plasma heating in fast ignition, a relativistic Fokker-Planck code for fast electrons is developed in a one-dimensional planar coordinates system. It is found that in dense plasmas, the Joule heating is much smaller than the heating through Coulomb interactions. In the latter energy deposition process, the long-range collective effect is comparable to that of binary electron-electron collisions. Moreover, on the basis of coupled transport-hydrodynamic simulations in one-dimensional planar geometry, the core heating process for an ignition-experiment-grade compressed core (R = 0.3 g/cm2) is examined, and a possibility of evaluation of burn history from the neutron spectrum is shown. It is shown that a relatively low energy component (E0 1 MeV) of electron beams plays an important role for effective core heating in fast ignition.