ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
C. A. Gentile, H. M. Fan, J. W. Hartfield, R. J. Hawryluk, F. Hegeler, P. J. Heitzenroeder, C. H. Jun, L. P. Ku, P. H. LaMarche, M. C. Myers, J. J. Parker, R. F. Parsells, M. Payen, S. Raftopoulos, J. D. Sethian
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 414-419
Technical Paper | Lasers and Heavy-Ion Drivers | doi.org/10.13182/FST03-A286
Articles are hosted by Taylor and Francis Online.
Princeton Plasma Physics Laboratory, in collaboration with the Naval Research Laboratory, is currently investigating various novel materials (single-crystal silicon, <100>, <110>, and <111>) for use as electron beam transmission windows in a krypton fluoride (KrF) excimer laser system. The primary function of the window is to isolate the active medium (excimer gas) from the excitation mechanism (field-emission diodes). The chosen window geometry must accommodate electron energy transfer >80% (750 keV) while maintaining the structural integrity during the mechanical load (1.3- to 2.0-atm base pressure differential, ~0.5-atm cyclic pressure amplitude, 5-Hz repetition rate) and the thermal load across the entire hibachi area (~0.9 Wcm-2). In addition, the window must be chemically resistant to attack by fluorine free radicals (hydrofluoric acid, secondary). In accordance with these structural, functional, and operational parameters, a 22.4-mm square silicon prototype window, coated with 500-nm thin-film silicon nitride (Si3N4), has been fabricated. The window consists of 81 square panes 0.019 ± 0.001 mm thick. The stiffened (orthogonal) sections are 0.065 mm wide and 0.500 mm thick (approximate). Assessment of silicon (and silicon nitride) material properties and computer-aided design modeling/analysis of the window design suggest that silicon may be a viable solution to inherent parameters and constraints.