ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
S. Shin, F. Abdelall, D. Juric, S. I. Abdel-Khalik, M. Yoda, D. Sadowski, ARIES Team
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 366-377
Technical Paper | Chambers and Chamber Wall Protection Methods | doi.org/10.13182/FST03-A280
Articles are hosted by Taylor and Francis Online.
A numerical and experimental investigation has been conducted to analyze the fluid dynamic aspects of the porous wetted wall protection scheme for inertial fusion energy (IFE) reactor first walls. A level contour reconstruction method has been used to track the three-dimensional evolution of the liquid film surface on porous downward-facing walls with different initial film thickness, liquid injection velocity through the porous wall, surface disturbance amplitude, configuration and mode number, liquid properties, and surface inclination angle. Generalized charts for the computed droplet detachment time, detached droplet equivalent diameter, and minimum film thickness during the transient for various design parameters and coolant properties are presented.In order to validate the numerical results over a wide range of parameters, an experimental test facility has been designed and constructed to simulate the hydrodynamics of downward-facing porous wetted walls. Nondimensionalization of the model shows that water can be adequately used as a simulant to validate the numerical results. Preliminary experimental results show good agreement with model predictions. The results of this investigation should allow designers of conceptual IFE reactors to identify appropriate "windows" for successful operation of the porous wetted wall protection concept for different coolants.