ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ljubomir Nikolic, Milos M. Skoric, Seiji Ishiguro, Tetsuya Sato
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 359-365
Technical Paper | Targets and Target Protection During Injection | doi.org/10.13182/FST03-A279
Articles are hosted by Taylor and Francis Online.
Propagation of a laser light through regions of an underdense plasma is an active research topic in laser fusion. In particular, a large effort has been invested in studies of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS), which can reflect laser energy and produce energetic particles to preheat a fusion energy target. Experiments, theory, and simulations agree on a complex interplay between various laser-plasma instabilities. By particle-in-cell simulations of an underdense electron plasma, apart from the standard SRS, a strong backscattering was found near the electron plasma frequency at densities beyond the quarter critical. This novel instability, recognized in recent experiments as stimulated laser scattering on a trapped electron-acoustic mode (SEAS), is absent from a classical theory of laser-parametric instabilities. A parametric excitation of SEAS instability is explained by a three-wave resonant decay of the incident laser light into a standing backscattered wave and a slow trapped electron-acoustic wave ([omega] < [omega]p). Large SEAS pulsations, eventually suppressed by relativistic heating of electrons, are observed in these simulations. This phenomenon seems relevant to future hohlraum target and fast ignition experiments.