ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ryusuke Tsuji
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 327-333
Technical Paper | Targets and Target Protection During Injection | doi.org/10.13182/FST03-A274
Articles are hosted by Taylor and Francis Online.
The flow of residual metal vapor in an inertial fusion energy (IFE) reactor chamber causes (a) forced convection heat transport to the target, (b) drag force to the target, and (c) deviation of the orbit of the target. To solve these difficulties, a flying metal pipe concept for target transport in an IFE reactor is proposed.The metal pipe is composed of material identical to the liquid metal used in the IFE reactor. The metal pipe (typically 0.5-cm radius and 2-m length) is injected from the top of the IFE reactor chamber. Subsequently, the IFE target is injected, and it goes into the metal pipe, goes out from the other side of the pipe, and arrives at the center of the IFE reactor chamber to be shot by energy beams. The target in the pipe is protected against radiation, forced convection heat from residual gas, and the wind in the IFE reactor chamber. In the case that the flying metal pipe is used in the reactor, heat transport to the target and deviation of the orbit of the target decrease. After microexplosion of the IFE target, the metal pipe arrives at the bottom of the reactor chamber and melts in the liquid-metal pool.