ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jon Streit, Diana Schroen
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 321-326
Technical Paper | Targets and Target Protection During Injection | doi.org/10.13182/FST43-321
Articles are hosted by Taylor and Francis Online.
An overview of the present status of development of a hollow foam shell designed to produce high yields when used in a krypton fluoride inertial fusion energy (IFE) reactor is presented. Prototype shells have been produced from a 100 mg/cm3 density CH foam with an ~4-mm diameter and 300 m wall thickness. A triple-orifice droplet generator was used to form the shells using solutions of an internal water phase, an oil phase (divinylbenzene monomer, dibutyl phthalate solvent, and a radical initiator), and an external water phase. The lowest percent of nonconcentricity measured for a completed shell was 3%, and the lowest average percent of nonconcentricity for a batch of shells was 7%. A technique to overcoat the shells with a 1- to 5-m-thick full-density polymer layer using an interfacial polycondensation reaction is being developed. Methods to further optimize dimensions to produce shells that meet IFE specifications are also discussed.