ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Warren P. Steckle, Jr., Arthur Nobile, Jr.
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 301-306
Technical Paper | Targets and Target Protection During Injection | doi.org/10.13182/FST43-301
Articles are hosted by Taylor and Francis Online.
Low-density polymer foams have been an integral part of targets used in inertial confinement fusion (ICF) experiments. Target designs are unique in the ICF program, and targets are made on an individual basis. Costs for these targets are high due to the time required to machine, assemble, and characterize each target. To produce targets in high volume and at low cost, a polymer system is required that is amenable to scale up. High internal phase emulsion (HIPE) polystyrene is a robust system that offers great flexibility in terms of tailoring the density and incorporating metal dopants. Emulsions used to fabricate HIPE foams currently are made in a batch process. With the use of metering pumps for both the water and oil phases, emulsions can be produced in a continuous process. This not only makes these foams potential candidates for direct-drive capsules, but high-Z dopants can be metered in making these foams attractive for hohlraum components in indirect-drive systems. Preparation of HIPE foams are discussed for both direct-drive and indirect-drive systems.