ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
M. Kalal, J. Limpouch, E. Krousky, K. Masek, K. Rohlena, P. Straka, J. Ullschmied, A. Kasperczuk, T. Pisarczyk, S. Yu. Gus'kov, A. I. Gromov, V. B. Rozanov, V. N. Kondrashov
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 275-281
Technical Paper | Targets and Target Protection During Injection | doi.org/10.13182/FST03-A267
Articles are hosted by Taylor and Francis Online.
Efficient energy transfer and smoothing effect in laser-irradiated polystyrene foam targets have been observed in preliminary experiments on the PALS iodine laser facility. A theory of laser light absorption region formation and ablation pressure generation in laser-produced plasma of porous matter has been developed and applied for discussion of the results obtained. In particular, two stages of homogenization of the porous matter, important for comprehension of the anomalously high absorption of laser radiation in supercritical foam matter, have been identified: the first, a considerably fast stage of partial homogenization, followed by a much slower second stage, leading to a uniform medium.