ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
Sebahattin Ünalan, S. Orhan Akansu, Hanifi Saraç
Fusion Science and Technology | Volume 43 | Number 2 | March 2003 | Pages 230-249
Technical Paper | doi.org/10.13182/FST03-A263
Articles are hosted by Taylor and Francis Online.
In an inertial fusion energy (IFE) reactor of 1000-MW(electric) fusion power, 95% flibe and 5% fuel with DRc thickness instead of 100% flibe are used. At startup, the tritium breeding ratio and M-blanket energy multiplication ratio are 1.05 and 1.26 for UF4 and DRc [approximately equal to] 60 cm, respectively. These values increase during an operation period of 30 yr. In 11 yr, M increases from 1.26 to 2 [= 2000 MW(electric)]. After operation of 11 yr, the energy production is stabilized by means of separation of produced plutonium. After 30 yr, displacement per atom (dpa) and helium production in the first wall are calculated as 92 dpa and 590 ppm, respectively. In addition, the cost of electricity values of the HYLIFE-II and the improved HYLIFE-II of 2000 MW(electric) drop from 4.5 and 3.2 ¢/kWh to 4.18 and 3.00 ¢/kWh, respectively. On the other hand, the IFE reactor has the fissile fuel breeding potential of 70 tonnes. The fissile fuel of 45 tonnes corresponding to [approximately equal to]2350 kg/yr would be sufficient to provide makeup fuel for [approximately equal to]10 light water reactors after 11 yr. After the shutdown process, 25 tonnes of fissile fuel with fuel enrichment of 23% would be left over.