ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sergei Molokov, Claude B. Reed
Fusion Science and Technology | Volume 43 | Number 2 | March 2003 | Pages 200-216
Technical Paper | doi.org/10.13182/FST03-A261
Articles are hosted by Taylor and Francis Online.
Liquid metal flow in a straight duct in a fringing magnetic field is considered. The magnetic field is uniform with two different levels upstream and downstream. In the region of a nonuniform magnetic field, the gradient of the field is aligned with the duct axis. The flow is assumed to be inertialess. It is analyzed using an asymptotic flow model at high values of the Hartmann number, Ha. A corresponding study of the flow is used as a starting point by Hua and Walker. The analysis leads to two two-dimensional partial differential equations for the core pressure and the electric potential of the duct wall. These equations are solved numerically using central differences on a transformed grid. It has been confirmed that for the flow in insulating circular ducts, the three-dimensional effects are very significant. For high values of Ha, the three-dimensional pressure drop is equivalent to the extension of the length of the duct with fully developed flow by 10 to 150 diameters. A parametric study of the flow has been performed for different values of the Hartmann number, field gradient, and field levels upstream and downstream. A solution for the benchmark problem has been obtained for Ha = 258 000, which is relevant to inlet/outlet pipes for ARIES. Finally, the effect of the finite length of the magnet in magnetohydrodynamic experiments has been evaluated.