ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Naeem A. Tahir, Dieter H. H. Hoffmann
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 164-170
Technical Paper | doi.org/10.13182/FST98-A26
Articles are hosted by Taylor and Francis Online.
Various aspects of burn of advanced fuel inertial fusion targets are discussed, including pure deuterium as well as D-3He targets. In the case of deuterium fuel, the mass of tritium and 3He created in D-D reactions is calculated as a function of the fuel R, keeping the fuel mass constant (20 mg). It has been found that as the fuel R is varied from 40 to 80 g/cm2, the burn of 3He increases from 20 to 75%, whereas 95% of the tritium is consumed during the burn. An ignition temperature of 5 keV is considered in these calculations. It has also been found that introduction of a small fraction of tritium atoms (1%) uniformly distributed in the deuterium fuel allows a reduction in ignition temperature by more than a factor of 2. In the case of D-3He targets, an ignition temperature of the order of 10 keV is required, but introducing 1% tritium atoms in the fuel allows an ignition temperature of 3 keV.