ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Naeem A. Tahir, Dieter H. H. Hoffmann
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 164-170
Technical Paper | doi.org/10.13182/FST98-A26
Articles are hosted by Taylor and Francis Online.
Various aspects of burn of advanced fuel inertial fusion targets are discussed, including pure deuterium as well as D-3He targets. In the case of deuterium fuel, the mass of tritium and 3He created in D-D reactions is calculated as a function of the fuel R, keeping the fuel mass constant (20 mg). It has been found that as the fuel R is varied from 40 to 80 g/cm2, the burn of 3He increases from 20 to 75%, whereas 95% of the tritium is consumed during the burn. An ignition temperature of 5 keV is considered in these calculations. It has also been found that introduction of a small fraction of tritium atoms (1%) uniformly distributed in the deuterium fuel allows a reduction in ignition temperature by more than a factor of 2. In the case of D-3He targets, an ignition temperature of the order of 10 keV is required, but introducing 1% tritium atoms in the fuel allows an ignition temperature of 3 keV.