ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Stephen C. Jardin, Charles E. Kessel, Dale Meade, Charles L. Neumeyer, Jr.
Fusion Science and Technology | Volume 43 | Number 2 | March 2003 | Pages 161-175
Technical Paper | doi.org/10.13182/FST03-A257
Articles are hosted by Taylor and Francis Online.
A new burning plasma systems code has been developed for analysis of a next step compact burning plasma experiment with copper-alloy magnet technology. Two classes of configurations are considered: type A, with the toroidal field (TF) coils and ohmic heating (OH) coils unlinked, and type B, with the TF and OH coils linked. Curves of the minimizing major radius as a function of aspect ratio R(A) are obtained for each configuration type for typical parameters. These curves represent, to first order, cost-minimizing curves. The type B curves always lie below the type A curves for the same physics parameters, indicating that they lead to a more compact design. However, the fact that the type A OH and TF magnets are not linked presents fewer engineering challenges and should lead to a more reliable design. Both the type A and type B curves have a minimum in major radius R at a minimizing aspect ratio A typically above 2.8 and at high values of magnetic field B above 10 T. The minimizing A occurs at larger values for longer pulse and higher performance devices. The larger A and higher B design points also have the feature that the ratio of the discharge time to the current redistribution time is largest so that steady-state operation can be more realistically prototyped. A sensitivity study is presented for the baseline type A configuration showing the dependence of the results on the parameters held fixed for the minimization study.