ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
John F. Schivell, Charles E. Bush, D. K. Mansfield, Sidney S. Medley, Hyeon K. Park, F. J. Stauffer
Fusion Science and Technology | Volume 15 | Number 4 | July 1989 | Pages 1520-1540
Technical Paper | Experimental Device | doi.org/10.13182/FST89-A25342
Articles are hosted by Taylor and Francis Online.
Although the total radiated power in the Tokamak Fusion Test Reactor is often as high as 70% of the heating power, most of the radiation is concentrated near the surface of the plasma, and the interior loss is almost negligible. Fractional radiation loss declines during neutral beam heating. Under most interesting plasma conditions, the radiation profiles are dominated by asymmetrical peaks, which indicate locally intense edge radiation. As the high-density limit is approached, under most conditions, a bright band of radiation (a “marfe”) appears on the inner side of the plasma column. Marfe location is affected by toroidal field direction, neutral beam direction, and nearness to the high-density limit. Marfes have been observed to drift under the plasma column to the lower outside plasma edge. Marfes naturally develop into detached plasmas. In enhanced confinement discharges (“super-shots”), an unexplained peculiar bright band, distinct from a marfe, appears in the lower outside part of the vacuum vessel, outside of the limiter radius. In high-density pellet-fueled discharges, there is a central peak that shows evidence for inward impurity convection.