ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
John F. Schivell, Charles E. Bush, D. K. Mansfield, Sidney S. Medley, Hyeon K. Park, F. J. Stauffer
Fusion Science and Technology | Volume 15 | Number 4 | July 1989 | Pages 1520-1540
Technical Paper | Experimental Device | doi.org/10.13182/FST89-A25342
Articles are hosted by Taylor and Francis Online.
Although the total radiated power in the Tokamak Fusion Test Reactor is often as high as 70% of the heating power, most of the radiation is concentrated near the surface of the plasma, and the interior loss is almost negligible. Fractional radiation loss declines during neutral beam heating. Under most interesting plasma conditions, the radiation profiles are dominated by asymmetrical peaks, which indicate locally intense edge radiation. As the high-density limit is approached, under most conditions, a bright band of radiation (a “marfe”) appears on the inner side of the plasma column. Marfe location is affected by toroidal field direction, neutral beam direction, and nearness to the high-density limit. Marfes have been observed to drift under the plasma column to the lower outside plasma edge. Marfes naturally develop into detached plasmas. In enhanced confinement discharges (“super-shots”), an unexplained peculiar bright band, distinct from a marfe, appears in the lower outside part of the vacuum vessel, outside of the limiter radius. In high-density pellet-fueled discharges, there is a central peak that shows evidence for inward impurity convection.