ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Dan M. Goebel, Joseph Bohdansky, Robert W. Conn, Yoshi Hirooka, Wai Kwong Leung, Richard E. Nygren, George R. Tynan
Fusion Science and Technology | Volume 15 | Number 1 | January 1989 | Pages 102-107
Technical Paper | doi.org/10.13182/FST89-A25332
Articles are hosted by Taylor and Francis Online.
The results of erosion and redeposition studies of graphite by hydrogen plasma bombardment in the PISCES facility are reviewed. The total erosion yields of several types of graphites have been measured during plasma exposure with ion fluxes of up to 2 × 1018 cm−2·s−1, ion energies of 50 to 200 eV, and sample temperatures of 50 to 950°C. Hydrogen and deuterium plasmas have been used to bombard Poco, ATJ, and pyrolytic graphites, and a “four-directional” carbon-carbon (C-C) composite weave. The erosion rates of all the graphites tested are about equal, suggesting that surface damage by the ion bombardment results in similar erosion yields. The C-C composite weave material showed an increased weight loss during initial exposure, and then equal or lower erosion yields compared to the other graphites. Graphite has a strong ion energy dependence in the maximum chemical erosion yield at a temperature of 500 to 600°C and no energy dependence for the erosion at room temperature. At temperatures above 800°C, the chemical erosion is suppressed and the erosion yield reaches values expected for physical sputtering with thresholds of ∼40 eV for both hydrogen and deuterium. The measured erosion rates demonstrate that chemical sputtering is not significantly suppressed by high-ion fluxes. The net erosion is also reduced by reionization in the plasma and redeposition of hydrocarbons and physically sputtered carbon.