ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
H. Foerstel, K. Lepa, H. Trierweiler.
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 1203-1208
Tritium Release Experiment | doi.org/10.13182/FST88-A25303
Articles are hosted by Taylor and Francis Online.
After HT is converted to HTO by the soil, the HTO is reemitted back into the atmosphere. Since HTO is more radiotoxic by a factor of 104, this reemission is an important part of the radioecological pathway of HT1. Laboratory studies show that the reemission rate from natural soil cores depends on the turnover in the gas space above the soil surface. Up to a wind velocity of about 4 m s−1, the portion of HTO reemitted hourly increases to about 18 % of the initial amount of the reaction product. However, after the first hour, the observed reemission rate decreases quickly to about 3% h−1. Varying the humidity of an air stream fed at a velocity of about 3 m s−1 into the reaction chamber, had no influence on the reemission rate. For the Canadian release study, small soil samples were exposed to the plume and afterwards to the air. Then, at certain intervals following the release, the soil containers were sealed with gastight lids. The remnant HTO activity was then determined by azeotropic distillation. The reemission rate, determined by this procedure, was about 3% h−1 during the day. During the night, no HTO loss was observed, possibly due to dew formation.