ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
O. A. Griesbach, J. R. Stencel
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 1199-1202
Tritium Release Experiment | doi.org/10.13182/FST88-A25302
Articles are hosted by Taylor and Francis Online.
An international tritium model validation experiment was held at Chalk River, Canada, during June 1987. The Princeton Plasma Physics Laboratory (PPPL) Differential Atmospheric Tritium Sampler (DATS) was one of the many types of tritium samplers used for this experiment. Besides the modeling data that were produced from this experiment, we learned how well our tritium samplers performed when a known tritium quantity was released. The DATS were set up at 50, 100, 200, and 400 meters downwind from the release point. Data were collected during the release period and for the next 24 hours. While the units worked very well in the field, valued operational experience was gained in the recovery of the tritium from the silica gel. Because of delays in the analysis of the collected samples, it became difficult to recover the HTO fraction quantitatively. Indications are that molecular sieve is more suitable for samples which are not going to be processed immediately. This paper reports on the field set up, the measurement results, and operational experience in the use of the DATS.