ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J.R. Johnson, E.S. Lamothe, J.S. Jackson, R.G.C. McElroy
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 1147-1152
Tritium Safety | doi.org/10.13182/FST88-A25293
Articles are hosted by Taylor and Francis Online.
Experiments by Hutchin and Vaughan on rats and by Eakins et al. on humans have shown that a surface contaminated by tritiated hydrogen gas (T2) that is brought into contact with intact skin will result in elevated concentrations of organically bound tritium (OBT) in urine, and in skin, at the point of contact. Johnson and Dunford evaluated the range of likely dosimetric consequences of this mode of tritium uptake, and Johnson and Peterman carried out a preliminary experiment in rats to better quantify the retention of this organically bound tritium in skin and in other tissue. Recently, experiments were carried out on rats exposed to T2 contaminated surfaces to extend the measurements of OBT in tissues to several months post exposure; to measure the microdistribution of the OBT in skin tissue; to develop methods of measuring OBT in urine; and to evaluate the effectiveness of decontamination efforts after an exposure. Retention and excretion was followed for 56 days post exposure. Elevated OBT was observed throughout this period, most notably in skin and liver. Autoradiography of skin sections at the point of contact indicates that the OBT is concentrated in the basal layer of the skin, in the epithelium of hair follicles, and in subcutaneous muscle. These data were used to relate the OBT in urine to doses to the skin at the point of contact. Various ion exchange columns were evaluated for their ability to separate out the OBT from the HTO but were not found to be effective. A double distillation method is recommended. Protection by gloves against uptake varied from about a factor of 2 to 100, depending on glove material and length of exposure. Barrier creams did not provide much protection. Washing the skin with a detergent or alcohol immediately after exposure reduced uptake and retention in skin. The effectiveness of this decontamination method decreases rapidly with time. P.O. Box 1046, Ottawa, Ontario. In press.