ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G.G. Killough, D.C. Kocher
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 1115-1120
Tritium Safety | doi.org/10.13182/FST88-A25288
Articles are hosted by Taylor and Francis Online.
Dynamic compartment models are widely used to describe global cycling of radionuclides for purposes of dose estimation. In this paper we present a new global tritium model that reproduces environmental time-series data on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the southern hemisphere, and the latitude dependence of tritium in both hemispheres. Named TRICYCLE for “TRItium CYCLE,” the model is based on the global hydrologic cycle and includes hemispheric stratospheric compartments, disaggregation of the troposphere and ocean surface waters into eight latitude zones, consideration of the different concentrations of atmospheric tritium over land and over the ocean, and a diffusive model for transport in the ocean. TRICYCLE reproduces the environmental data if we assume that about 50% of the tritium from atmospheric weapons testing was injected directly into the northern stratosphere as HTO. The model's latitudinal disaggregation permits taking into account the distribution of population. For a uniformly distributed release of HTO into the worldwide troposphere, TRICYCLE predicts a collective dose commitment to the world population that exceeds the NCRP model's corresponding prediction by a factor of three.