ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Fighting fatigue and maintaining 10 CFR Part 26 compliance
Fatigue has been identified as a major risk factor in industrial accidents. According to the National Safety Council, 13 percent of workplace injuries can be attributed to fatigue.1 Other research indicates that working 12 hours per day is associated with a staggering 37 percent increase in risk of injury.2 Considering fatigue was a contributing factor to major nuclear accidents at Chernobyl and Three Mile Island, it makes sense that the Nuclear Regulatory Commission imposes hefty fines to ensure strict adherence to its fatigue management regulations—particularly, Code of Federal Regulations Title 10, Part 26, “Fitness for Duty Programs.”
J. T. Gill, R. E. Ellefson, R. P. Paulick, C. M. Colvin, R. L. Yauger, E. E. Johns, R. L. Anderson, E. L. Lewis, P. H. Lamberger, R. E. Vallee
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 876-883
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25245
Articles are hosted by Taylor and Francis Online.
A recent tritium inventory imbalance at Mound required an investigation into its causes. Much tritium was found as HTO in unsuspected zeolite traps of a T-purification system. Isotopic exchange from ammonia was postulated as a mechanism for entry of T into the zeolitic water. Gases from a T-processing system which had experienced air in-leakage were shown, by trapping of condensibles, to contain substantial H-isotopic waters and ammonias. Further evidence for tritiated ammonia was inferred from changes in pressure and T purity in otherwise unperturbed tanks of N2 and (H/D/T)2. From two such tanks which held N2 and T2 at equilibrium, ammonia was trapped and decomposed; a preliminary equilibrium constant for N2 + 3T2 ⇔ 2NT3 was determined. Controlled experiments by laser Raman spectrometry are in progress to investigate N2/T2 equilibria and kinetics. Results for gas mixtures in the 60–130 kPa (500–1000 torr) range (per reactant) suggest that the forward rate and the equlibrium attained are α [T2]2 . G-values for NT3 production were ≈1–2 molecules atm-1 (T2) (100eV)-1. Self-decomposition of NT3 proceded in an exponential decay with a G = 15–30. A lower value was observed at pressures where β--absorption in the gas was poor.