ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
P. C. Souers, E. M. Fearon, R. K. Stump, R. T. Tsugawa
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 850-854
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25241
Articles are hosted by Taylor and Francis Online.
Collision-induced infrared spectroscopy may be used to measure the composition of a liquid or solid deuterium-tritium (D-T) mixture. For T2, DT and D2, respectively, we measure the areas under the absorption peaks in the regions 76.75 to 80.19, 85.29 to 88.74, and 92.79 to 96.23 THz (2560–2675, 2845–2960, and 3095–3210 cm−1). These areas are multiplied, respectively, by these isotopic sensitivities derived from quantum calculations: 1.000, 0.891, and 0.811. The resulting numbers are proportional to the molar composition. Nearly equimolar D-T samples show good agreement between mass and infrared spectroscopy. The large DT peak in enriched molecular DT overemphasizes D2 in the infrared analysis, but these results may be corrected with the room-temperature, mass-spectroscopic D-to-T ratio.