ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E. Willin, M. Sirch, R.-D. Penzhorn, M. Devillers
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 756-763
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25226
Articles are hosted by Taylor and Francis Online.
Whereas titanium is a getter material mainly suitable for the long-term storage of tritium, zirconium cobalt alloy can also be employed for the interim storage and transport of this gas. Activated zirconium cobalt alloy reacts within minutes with hydrogen at room temperature. At the composition of ZrCoH0.8 the dissociation pressure at room temperature is estimated to be 10−3 Pa. The zirconium cobalt / H2 system is not pyrophoric at room temperature. Methane is partially cracked on Ti and on ZrCo at temperatures above 600 and 300°C respectively. With titanium the corresponding carbide is formed without affecting the storage properties of the getter. After reaction of ZrCo with CH4 or N2 the hydrogen absorption capacity is reduced. Titanium powder, sponge or sheet react with nitrogen at temperatures above 750°C with a parabolic rate law. In the overlayer of the metal substrate the phases N dissolved in α-Ti, Ti2N and TiN were identified. The same phases were observed when NH3 reacts with this metal.