ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
E. Willin, M. Sirch, R.-D. Penzhorn, M. Devillers
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 756-763
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25226
Articles are hosted by Taylor and Francis Online.
Whereas titanium is a getter material mainly suitable for the long-term storage of tritium, zirconium cobalt alloy can also be employed for the interim storage and transport of this gas. Activated zirconium cobalt alloy reacts within minutes with hydrogen at room temperature. At the composition of ZrCoH0.8 the dissociation pressure at room temperature is estimated to be 10−3 Pa. The zirconium cobalt / H2 system is not pyrophoric at room temperature. Methane is partially cracked on Ti and on ZrCo at temperatures above 600 and 300°C respectively. With titanium the corresponding carbide is formed without affecting the storage properties of the getter. After reaction of ZrCo with CH4 or N2 the hydrogen absorption capacity is reduced. Titanium powder, sponge or sheet react with nitrogen at temperatures above 750°C with a parabolic rate law. In the overlayer of the metal substrate the phases N dissolved in α-Ti, Ti2N and TiN were identified. The same phases were observed when NH3 reacts with this metal.