ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
E. Willin, M. Sirch, R.-D. Penzhorn, M. Devillers
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 756-763
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25226
Articles are hosted by Taylor and Francis Online.
Whereas titanium is a getter material mainly suitable for the long-term storage of tritium, zirconium cobalt alloy can also be employed for the interim storage and transport of this gas. Activated zirconium cobalt alloy reacts within minutes with hydrogen at room temperature. At the composition of ZrCoH0.8 the dissociation pressure at room temperature is estimated to be 10−3 Pa. The zirconium cobalt / H2 system is not pyrophoric at room temperature. Methane is partially cracked on Ti and on ZrCo at temperatures above 600 and 300°C respectively. With titanium the corresponding carbide is formed without affecting the storage properties of the getter. After reaction of ZrCo with CH4 or N2 the hydrogen absorption capacity is reduced. Titanium powder, sponge or sheet react with nitrogen at temperatures above 750°C with a parabolic rate law. In the overlayer of the metal substrate the phases N dissolved in α-Ti, Ti2N and TiN were identified. The same phases were observed when NH3 reacts with this metal.