ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Kan Ashida, Masao Matsuyama, Kuniaki Watanabe
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 735-740
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25222
Articles are hosted by Taylor and Francis Online.
Graphite is the primary candidate for the first wall of magnetically confined fusion devices. For this application, it is important to know the surface properties and trap/release behavior of hydrogen isotopes to understand fuel recycling/inventory in the graphite first wall. The surface analysis of as-received graphite revealed that the inherent hydrogen content is larger in isotropic compared to the anisotropic graphite. This is due to the presence of non-graphitized carbon atoms in the isotropic graphite which act as the trapping sites of hydrogen atoms. Ion bombardment causes the reduction of the crystallite size of graphite (damage modification), leading to amorphous-like structure. The thermal desorption spectra of hydrogen isotopes consisted of three desorption peaks for the modified graphite. The desorption mechanisms and parameters of three peaks are determined. These parameters were used to estimate the fuel inventory in the graphite.