ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
M. Glugla, R.D. Penzhorn, J.L. Anderson, J.R. Bartlit
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 683-688
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25213
Articles are hosted by Taylor and Francis Online.
Based on experimental results on the catalytic decomposition of ammonia and methane into the elements a process for DT - recycling of molecular and chemically bonded deuterium / tritium from the fusion reactor exhaust gas is under development at KfK. In this context typical plasma contaminants like methane and ammonia tritiated to nearly 50% were synthesized on a 1 to 2·1012 Bq (30 to 50 Ci) scale. The radiolytic reactions were followed from the rate of disappearance of ammonia and the formation of nitrogen / hydrogen in case of tritiated ammonia and from the disappearance of methane and the formation of hydrogen in case of tritiated methane. The apparent half-lifes of tritiated methane and tritiated ammonia were determined to be approx. 250 hours and 550 hours respectively. The catalytic cracking reactions of tritiated ammonia and tritiated methane followed the behaviour anticipated from corresponding cold experiments.