ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J.M. Miller, R.A. Verrall, D.S. MacDonald, S.R. Bokwa
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 649-656
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25208
Articles are hosted by Taylor and Francis Online.
Results from the CRITIC-I, vented capsule irradiation of Li2O are presented. A total lithium burnup of 0.74% has been achieved and 1500 curiesb of tritium have been collected over the first 15 months of irradiation. The temperature has been varied between 400 and 850°C, and the sweep gas composition changed progressively from pure He to He-1% H2. The amount of tritium recovered in the reduced form (HT) has increased from an initial value of approximately 50% with pure He sweep gas to a current value of 99% with He-1% H2. The increasing H2 concentration in the sweep gas has also reduced the time constants for tritium release (tritium residence time in the Li2O). Although the results indicate tritium release is controlled by surface desorption, simple first-order desorption theories do not explain all the observations. Most noticeably, for temperature increase tests, tritium release peak maxima can be delayed as long as 6 h and inventory changes depend not only on the initial temperature but also on the time at the initial temperature. An explanation is given based on the buildup of free oxygen in the ceramic from lithium burnup which leads to tritium trapping, perhaps as LiOH(T). Dissociation of LiOH(T) then occurs following an increase in the ceramic temperature, in addition to the simple first-order desorption process of isotopic exchange with H2 in the sweep gas.