This paper presents Nuclear Magnetic Resonance (NMR) studies of aging phenomena in palladium tritide. 3He NMR relaxation parameters have been measured as a function of temperature for 6-, 13-, and 22-month-old beta phase palladium tritide. The most significant result of this study is the observation of a solid/fluid phase transition near 250 K of 3He that has accumulated in the PdTx substrate via triton decay. Although the existence of solid helium at relatively high temperatures had been predicted for helium in metals, it had not previously been confirmed in any metal/helium system. The observed melting temperatures, together with the known equation of state for 4He, allow a determination of the helium density as a function of age. The atomic density obtained in this way is approximately 2.0 times that of palladium metal, agreeing with densities inferred from dilatometric measurements of other metal tritides and also with predictions based on the concept of dislocation loop punching by highly overpressurized He bubbles. The 3He signal in the 22-month-old sample was sufficiently strong to allow a detailed study of melting as a function of temperature, and provides information on the distribution of densities over the ensemble of bubbles.