ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
W. A. Swansiger
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 631-636
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25205
Articles are hosted by Taylor and Francis Online.
An apparatus and technique were developed to measure the solubility of tritium in high diffusivity metals at tritium pressures up to 136 MPa (20,000 psia) and temperatures up to 700 K. The experiments described in this paper took advantage of the low detection limits for tritium and helium-3 to determine the solubilities of high pressure tritium in copper and gold at temperatures as low as 473 K, where solubilities are below the limits of detection for hydrogen or deuterium. Samples were exposed to high pressure tritium at an elevated temperature long enough to reach equilibrium, then cooled within seconds by dropping them into a cold (77 K) section of the apparatus, thereby immobilizing the dissolved tritium. Solubilities were then determined by acid dissolution/liquid scintillation counting or, alternatively, by vacuum fusion/helium-3 analysis. For both copper and gold, surface effects were found to be extremely important because (1) they greatly increased the time required for the samples to equilibrate with the tritium overpressure and (2) there was more tritium on and near the surface than was contained in the bulk of a sample. In the absence of trapping, the solubilities determined at high pressures at temperatures between 473 K and 673 K agreed well with extrapolations of solubilities measured at 0.1 MPa hydrogen and temperatures >873 K. Gold annealed at 1273 K in air exhibited much higher apparent solubilities than samples annealed at 873 K in air or vacuum, an effect tentatively attributed to trapping by oxygen which diffused into the sample during the high temperature annealing treatment.