ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
A.E. Everatt, A.H. Dombra, R.E. Johnson
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 624-628
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25204
Articles are hosted by Taylor and Francis Online.
Air detritiation dryers at fusion facilities require high detritiation factors to minimize environmental releases. To increase the detritiation factor in air dryers, we have investigated a technique of eluting the residual adsorbed tritiated water on a molecular sieve bed that uses H2O steam washing during regeneration. The method relies on additional detritiation of the air stream occurring through isotopic exchange between the tritiated water vapor passing through a dryer bed with previously adsorbed non-tritiated water. Isotopic exchange is studied in both an operating industrial-scale air dryer, where the bed has been pretreated to remove tritium, and in a small laboratory bed. A mathematical model is presented to quantify the isotopic exchange process.