ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Sebahattin Ünalan, S. Orhan Akansu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 110-121
Technical Paper | doi.org/10.13182/FST03-A252
Articles are hosted by Taylor and Francis Online.
Thermal and neutronic behavior of a peaceful nuclear explosion reactor (PACER) producing [approximately equal to]1.2 GWe electrical-power from fusion explosions in a cylindrical explosion chamber (radius = 30 m, height = 75 m) are analyzed. For determination of flibe mass (m) required for safe operation temperatures and pressures with enough tritium breeding ratio (TBR) and high M (fusion energy absorption ratio), neutronic calculations are carried out for different coolant zone positions (DR) and coolant zone thicknesses (DRc). Inlet pressure and temperatures (Tin) of flibe are 1 atm, and 823 and 1540 K.For all DR values, TBR and M reached saturation values of 1.27 and 1.07 at certain DRc values, respectively. Thereby, m increases with increased DR. To decrease flibe mass requirements, DR must be as low as possible. However, this causes high equilibrium pressures and enormous temperatures. Therefore, to decrease mechanical and chemical damages on the walls, DR must be high. The highest equilibrium pressures for the investigated parameters are [approximately equal to]100 and [approximately equal to]160 atm for Tin = 823 K and Tin = 1540 K, respectively. For the equilibrium temperature and pressures of 1750 K and [approximately equal to]20 atm, m and DR should be 3000 tonnes and 400 cm for Tin = 823 K, and 25000 tonnes and 700 cm for Tin = 1540 K.