ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Sebahattin Ünalan, S. Orhan Akansu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 110-121
Technical Paper | doi.org/10.13182/FST03-A252
Articles are hosted by Taylor and Francis Online.
Thermal and neutronic behavior of a peaceful nuclear explosion reactor (PACER) producing [approximately equal to]1.2 GWe electrical-power from fusion explosions in a cylindrical explosion chamber (radius = 30 m, height = 75 m) are analyzed. For determination of flibe mass (m) required for safe operation temperatures and pressures with enough tritium breeding ratio (TBR) and high M (fusion energy absorption ratio), neutronic calculations are carried out for different coolant zone positions (DR) and coolant zone thicknesses (DRc). Inlet pressure and temperatures (Tin) of flibe are 1 atm, and 823 and 1540 K.For all DR values, TBR and M reached saturation values of 1.27 and 1.07 at certain DRc values, respectively. Thereby, m increases with increased DR. To decrease flibe mass requirements, DR must be as low as possible. However, this causes high equilibrium pressures and enormous temperatures. Therefore, to decrease mechanical and chemical damages on the walls, DR must be high. The highest equilibrium pressures for the investigated parameters are [approximately equal to]100 and [approximately equal to]160 atm for Tin = 823 K and Tin = 1540 K, respectively. For the equilibrium temperature and pressures of 1750 K and [approximately equal to]20 atm, m and DR should be 3000 tonnes and 400 cm for Tin = 823 K, and 25000 tonnes and 700 cm for Tin = 1540 K.