ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ichiro Yamamoto, Akira Kaba, Akira Kanagawa
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 590-595
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25198
Articles are hosted by Taylor and Francis Online.
Experiments of H2-HT isotope separation were carried out with a hot wire column of 3 cm in diameter and 1.5 m in length. Separation factors were measured with cut changed from 0.1 to 0.9, and other operational conditions; pressure, feed rate and temperature difference, fixed. First, the feed rate was altered under the constant pressure, and next, pressure was changed. Experimental results were compared with those from an axisymmetric separative analysis, based on a Newton iterative solution of a convection-diffusion equation. Pressure dependence of separation factors agreeed qualitatively with those from theory. The separative power has a maximum value at 0.12 ∼ 0.16 MPa, when the feed rate was under 100 cm3/m(at 0.1 MPa, 25°C).