ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. H. Cheh
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 567-573
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25194
Articles are hosted by Taylor and Francis Online.
A large scale demonstration system was designed for a throughput of 3 mol/day equimolar mixture of H, D, and T. The demonstration system was assembled and an experimental program carried out. This project was funded by Kernforschungszentrum Karlsruhe, Canadian Fusion Fuel Technology Projects and Ontario Hydro Research Division. Several major design innovations were successfully implemented in the demonstration system and are discussed in detail. Many experiments were carried out in the demonstration system to study the performance of the system to separate hydrogen isotopes at high throughput. Various temperature programming schemes were tested, heart-cutting operation was evaluated, and very large (up to 138 NL/injection) samples were separated in the system. The results of the experiments showed that the specially designed column performed well as a chromatographic column and good separation could be achieved even when a 138 NL sample was injected. The system may also have many other applications such as fusion fuel or tritiated waste clean-up and separation of air contaminated hydrogen isotope samples.