ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
D.A. Spagnolo, A.E. Everatt, P.W.K. Seto, K.T. Chuang
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 501-506
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25182
Articles are hosted by Taylor and Francis Online.
The CECE process with AECL hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. A simple linear expression that relates the overall rate constant (Kya) to the inverse of the equilibrium slope (m) for H2/H2O isotope exchange was developed from the two-film mass transfer model. Laboratory and pilot data were used to demonstrate the applicability of this simple relationship which allows reaction rates for any pair of hydrogen isotope species at any given concentration to be predicted from rate data of any other isotope pair and/or concentration range. This approach was used to design a hypothetical CECE plant for concentrating tritiated light water to 100 Ci/L (3.7 TBq/L) to give a 250-fold reduction in waste volume.