ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
R.-D. Penzhorn, R. Rodriguez, M. Glugla, K. Günther, H. Yoshida, S. Konishi
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 450-455
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25173
Articles are hosted by Taylor and Francis Online.
For the plasma exhaust clean-up of a fusion reactor a process concept based on the hydrogen isotope purification through palladium/silver alloy permeators combined with selective catalytic reaction steps is proposed, which avoids intermediate conversion of impurities into water. To recover tritium from tritiated impurities ammonia is decomposed into the elements inside the permeators; water is reduced catalytically by carbon monoxide into carbon dioxide and hydrogen; and hydrocarbons are cracked into carbon and hydrogen on a nickel catalyst. Experimental results on the reactivity, consumption and regeneration of the catalysts are given. The permeation rate of hydrogen through palladium/silver alloy was found to be largely independent of the impurities CO, CO2, H2O and CH4. Technological requirements in view of NET are discussed.