ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Romano Toschi, Max Chazalon, Folker Engelmann, Jos Nihoul, Jürgen Raeder, Ettore Salpietro
Fusion Science and Technology | Volume 14 | Number 1 | July 1988 | Pages 19-29
Technical Paper | Net Overview | doi.org/10.13182/FST88-A25149
Articles are hosted by Taylor and Francis Online.
The objective of the Next European Torus (NET) is to demonstrate fusion energy production in an apparatus that meets the basic design and operating requirements of a reactor: 1. self-sustained deuterium-tritium thermonuclear reaction (ignition) 2. extended burn up to steady state 3. qualification and testing of components in reactor-like conditions 4. safe operation of a reactor-like device at significant availability 5. energy extraction at high grade and tritium breeding. The NET project guidelines as derived from the Fusion European Strategy are as follows: 1. to allow for a wide range of plasma parameters and minimize complexity, particularly for the first phase of physics investigation 2. to adopt, where possible and convenient, reactor-relevant technologies 3. to allow for improvements during operation, in particular for in-vessel components. Significant extrapolations from the Joint European Torus are anticipated. Therefore, the first phase of operation will have all the features of a “physics machine” for scientific feasibility demonstration, but have the potential and capability for technology feasibility demonstration. The selection of NET parameters has been guided by the following requirements: 1. to achieve ignition under a variety of assumptions on plasma confinement and operational limits. On this basis, a plasma current of ∼ 15 MA was chosen. 2. to accommodate various plasma shapes 3. to inductively drive the plasma current for a time much longer than particle confinement times (i.e., >100 s) 4. to perform engineering tests on representative blanket sectors. This leads to constraints on the neutron wall loading (≧0.5 MW/m2), on the inductive burn pulse duration (≧200 s), on the off-burn time (≦70s), and on the integral burn time of the device (≈ 7000 h). 5. to allow long burn up to steady-state operation, if achievable, with external heating powers not exceeding 100 MW, for engineering tests. NET is presently in the predesign phase. In 1990, a decision will be sought to expand the activity into a detailed design phase. Construction will begin as soon as the physics data base is adequate, anticipated to be 1994. Therefore, the technologies and design solutions must be proven feasible and reliable by that date. The machine should be completed by the year 2000.