ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ronald D. Boyd
Fusion Science and Technology | Volume 13 | Number 4 | May 1988 | Pages 644-653
Technical Paper | Blanket Engineering | doi.org/10.13182/FST88-A25139
Articles are hosted by Taylor and Francis Online.
A quasi-automated high heat flux flow boiling facility has been developed for the systematic study of critical heat flux (CHF), heat transfer, and two-phase pressure drop. High heat flux research is important in state-of-the-art electronics and fusion component design. For fusion applications, there are practically no low-pressure data for large values of coolant channel length-to-diameter (L/D) ratio (i.e., 100), channel diameters near 1.0 cm, and medium to high heat flux levels (i.e., 100 to 2000 W/cm2). A second step is provided to fill this void. Forced flow boiling (with water) quasi-steady experiments have been conducted on uniformly (resistively) heated horizontal copper tubes. The tubes were 1.02 cm in inside diameter and 117.87 cm long. The inlet water temperature was 20°C. For a 1.6-MPa exit pressure, measurements of the CHF varied from the annular flow regime (150 W/cm2) to the subcooled flow boiling regime (425 W/cm2). The mass velocity was varied from 0.63 to 3.5 Mg/m2·s. At 1.6 MPa, the transition between the annular and subcooled CHF regimes was measured to occur between 1.03 and 1.26 Mg/m2·s. Large axial variations in the Nusselt number were also measured. For example, at 1.7 Mg/m2·s, the Nusselt number varied from 120 at the channel's entrance to 500 at the exit. The CHF data were compared with correlations developed by Bowring, Katto, and Merilo. Below 4.0 Mg/m2, all correlations overpredicted the CHF data. Merilo's correlation, which was developed for high-pressure horizontal flows, predicted the CHF significantly above the present low-pressure data. The effects of orientation on the CHF data were small. Visual observations of the outside of the test section showed that burnout occurred simultaneously around the test section's perimeter. Circumferential measurements of the outside wall temperature also showed negligible variations. Therefore, at low pressures, the following conditions reduced the effect of orientation: 1. high liquid Reynolds number 2. high inlet subcooling 3. moderate L/D 4. increased effects of surface tension relative to buoyant and viscous forces at higher pressures (i.e., low Bond and Ohnesorge numbers)5. low value of buoyant forces relative to inertia forces.