ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ronald D. Boyd
Fusion Science and Technology | Volume 13 | Number 4 | May 1988 | Pages 644-653
Technical Paper | Blanket Engineering | doi.org/10.13182/FST88-A25139
Articles are hosted by Taylor and Francis Online.
A quasi-automated high heat flux flow boiling facility has been developed for the systematic study of critical heat flux (CHF), heat transfer, and two-phase pressure drop. High heat flux research is important in state-of-the-art electronics and fusion component design. For fusion applications, there are practically no low-pressure data for large values of coolant channel length-to-diameter (L/D) ratio (i.e., 100), channel diameters near 1.0 cm, and medium to high heat flux levels (i.e., 100 to 2000 W/cm2). A second step is provided to fill this void. Forced flow boiling (with water) quasi-steady experiments have been conducted on uniformly (resistively) heated horizontal copper tubes. The tubes were 1.02 cm in inside diameter and 117.87 cm long. The inlet water temperature was 20°C. For a 1.6-MPa exit pressure, measurements of the CHF varied from the annular flow regime (150 W/cm2) to the subcooled flow boiling regime (425 W/cm2). The mass velocity was varied from 0.63 to 3.5 Mg/m2·s. At 1.6 MPa, the transition between the annular and subcooled CHF regimes was measured to occur between 1.03 and 1.26 Mg/m2·s. Large axial variations in the Nusselt number were also measured. For example, at 1.7 Mg/m2·s, the Nusselt number varied from 120 at the channel's entrance to 500 at the exit. The CHF data were compared with correlations developed by Bowring, Katto, and Merilo. Below 4.0 Mg/m2, all correlations overpredicted the CHF data. Merilo's correlation, which was developed for high-pressure horizontal flows, predicted the CHF significantly above the present low-pressure data. The effects of orientation on the CHF data were small. Visual observations of the outside of the test section showed that burnout occurred simultaneously around the test section's perimeter. Circumferential measurements of the outside wall temperature also showed negligible variations. Therefore, at low pressures, the following conditions reduced the effect of orientation: 1. high liquid Reynolds number 2. high inlet subcooling 3. moderate L/D 4. increased effects of surface tension relative to buoyant and viscous forces at higher pressures (i.e., low Bond and Ohnesorge numbers)5. low value of buoyant forces relative to inertia forces.