ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Yujiro Ikeda, Mahmoud Z. Youssef
Fusion Science and Technology | Volume 13 | Number 4 | May 1988 | Pages 616-643
Technical Paper | Tritium System | doi.org/10.13182/FST88-A25138
Articles are hosted by Taylor and Francis Online.
Several integral experiments on tritium breeding were jointly performed at the Fusion Neutronics Source (FNS) facility at the Japan Atomic Energy Research Institute (JAERI), in connection with the U.S./JAERI Collaborative Program on Fusion Breeder Neutronics. Tritium production rates from 6Li (T6) and 7Li (T7) were measured at several locations in an Li2O assembly (D = 60 cm, L = 60 cm) embedded in the concrete wall of a 5- × 5- × 4.5-m room (reference experiment). JAERI has also performed independent benchmark experiments with the Li2O assembly located in a large room of negligible room-return neutrons. In the reference experiment, large discrepancies in T6 were found at the front locations in the Li2O assembly. At middle locations, the calculated-to-experimental (C/E) values for T6 are ∼1.2 (U.S.) and ∼1.1 (JAERI). The C/E values for T7 are ∼1.18 (U.S.) and 1.05 (JAERI). To assess the contribution to the uncertainty in predicting T6 and T7 that results from the current uncertainties in the nuclear data base, an extensive two-dimensional cross-section sensitivity/uncertainty analysis was performed. For that purpose, the FORSS module, and the VIP and DOT 4.3 codes were used along with the PUFF-2 covariance code. Two systems were considered for the analysis: the benchmark system and the reference system. The models used simulate the geometrical details and source conditions for the experiments. After coupling the sensitivity profiles with the cross-section uncertainty information (ENDF/B-V, file 33), it was found that the standard deviations in T6 are 2.0 to 3.5%. In the reference system, the uncertainties in T6 at front locations due to data uncertainties were found to be very small (∼0.3%). The large discrepancies at these locations between the calculation and measurements were attributed to inaccuracy in modeling and predicting the room-return component of incident neutrons. The uncertainties in T7 due to the uncertainties in nuclear data were found to be 3 to 6%, with the largest values at back locations. The discrepancies with experimental values were attributed to the inaccuracy in the 7Li(n,n′α)t cross section, which requires further evaluation.