ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
L. John Perkins
Fusion Science and Technology | Volume 13 | Number 4 | May 1988 | Pages 577-593
Technical Paper | Fusion Reactor | doi.org/10.13182/FST88-A25136
Articles are hosted by Taylor and Francis Online.
A methodology is developed to address two key related questions for the Engineering Test Reactor (ETR): 1. How do we make the best rational technical decision in selecting the optimum ETR design? 2. What is the uncertainty in this design point due to uncertainties in the system models and input data base we employ in formulating the design? The methodology provides a framework to reduce complex decision problems for the ETR to a quantitative form that compels us to consider all relevant technical factors and could form the basis of a consensus process for ETR design selection. The first key element in this process is the formulation of a utility function, a combination of ETR attributes (e.g., capital cost, wall loading, ignition margin, design credibility, etc.) into a single number that can be used as a global figure of merit to express the worth of a particular design and can be used as a value function for the intercomparison and optimization of ETR design concepts. In particular, we emphasize that intangible attributes, such as “reactor relevance” or “risk/confidence in filling mission goals” can be incorporated in a systematic manner. Next, a procedure is developed for determining the optimum design point from a field of available options, with concurrent acknowledgment of the uncertainty in the design point. We demonstrate that this involves the selection of the best set of “internal” systems variables (i.e., variables that we are free to specify in the design, such as major radius, plasma current, magnet current density, etc.) and an appropriate set of “external” systems variables (i.e., variables that are determined by external means and not under our control but that have associated uncertainties, such as the Troyon beta scaling coefficient, the unit cost of a plasma heating system, etc.), in order to maximize the value of the utility function and determine its uncertainty. We then expand the discussion of uncertainty through sensitivity analysis of the ETR design to emphasize that, because we have never yet experimentally observed a deuterium-tritium burning tokamak with high 14-MeV neutron fluxes and sustained by alpha-particle heating, assessment of the uncertainty in our design can be as important as the design point itself. We proceed to show that this uncertainty can be expressed as the quadrature combination of sensitivity profiles and individual uncertainties for all external systems variables employed in formulating the design and provide some illustrative examples for the current Tokamak Ignition/Burn Experimental Reactor ETR design due to uncertainties in the modeling data base. Finally, we demonstrate that our formalism is ideally suited for pinpointing critical external systems variables and models that must be determined to a greater accuracy to reduce the overall ETR design uncertainty to acceptable levels and, in particular, suggest how complementary value of information techniques might be applied to define the appropriate level of research and development.