ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. L. Jassby
Fusion Science and Technology | Volume 13 | Number 3 | March 1988 | Pages 463-472
Technical Paper | Alpha-Particle Workshop / Nonelectrical Application | doi.org/10.13182/FST88-A25124
Articles are hosted by Taylor and Francis Online.
Helium-3 placed in an annular cell or array of cells around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the 3He(n, p)T reaction and thereby excite gaseous lasants mixed with the 3He while simultaneously breeding tritium. The required 3He inventory is ∼ 5 kg for large tokamak devices. Special configurations of toroidal field magnets, neutron moderators, and reflectors must be incorporated to maximize the neutron flux in the laser cell. The annular laser radiation can be coupled to an unstable resonator at the top of the tokamak and extracted as a single output beam.