ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Kenneth L. Wrisley, Don Steiner
Fusion Science and Technology | Volume 13 | Number 3 | March 1988 | Pages 453-462
Technical Paper | Alpha-Particle Workshop / Fusion Reactor | doi.org/10.13182/FST88-A25123
Articles are hosted by Taylor and Francis Online.
One of the potentially attractive applications of nuclear fusion is to breed fissile fuel for use in fission reactors. A fusion-fission breeder is examined, based on four unique concepts: operation in a non-power-producing mode, a low technology (low pressure and temperature) aqueous self-cooled blanket for breeding fissile fuel, the spherical torus confinement scheme (low-aspect-ratio tokamak), and the catalyzed deuterium-deuterium (D-D) fuel cycle. The breeding of fissile fuel is accomplished by dissolving a uranium salt, i.e., uranyl nitrate, in heavy water that cools both the first wall and blanket. The use of the catalyzed D-D fuel cycle eliminates the need for tritium breeding. The neutron wall loading for this reactor is only ∼0.5 MW/m2, and the fusion power output is ∼1000 MW(thermal). Analysis of this novel reactor concept indicates a fissile breeding ratio of 1.34 fissile atom/source neutron using a 15-cm beryllium moderator/multiplier region and 7 mol% uranyl nitrate in the heavy water. A typical reactor using this blanket can produce more than 7400 kg of plutonium per operating year. This concept can provide fissile fuel at a cost that is comparable to previous fusion breeder designs but at a capital cost of about one-third that of the previous designs.