ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
John H. Pendergrass, David B. Harris, Donald J. Dudziak
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 375-395
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25112
Articles are hosted by Taylor and Francis Online.
A new model for the cost of production of heavy-ion fusion targets in dedicated on-site target factories is presented for power plants. The model treats single- and double-shell direct-drive and generic indirect-drive targets. Target factory capital costs, nontritium target materials costs, and target factory operations and maintenance costs are estimated for target substructures such as fuel capsules, radiation cases, and driver energy absorption regions. These individual estimates are combined to obtain the total target cost. Realistic scaling of target costs with variations of such important performance parameters as target factory production capacity and driver pulse energy is emphasized. The model can be modified and used for other inertial fusion drivers and fuels. Typical target cost estimates fall into the range of $0.25 to 0.45 per target. The estimated target cost contribution to the total cost of production of electric power is typically ∼4 to 7 mill/kW·h.