ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Douglas C. Wilson, Donald J. Dudziak, Glenn R. Magelssen, David S. Zuckerman, Daniel E. Driemeyer
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 333-338
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25107
Articles are hosted by Taylor and Francis Online.
The systems model for a commercial electric power facility produced by the Heavy-Ion Fusion System Assessment is used to study the sensitivity of electricity cost to various inertial confinement fusion target characteristics including gain, peak power, ion range, and target fabrication cost. Net electric power from the plant was fixed at 1000 MW(electric) to eliminate large effects caused by economies of scale. An improved target cost model is used and compared with earlier results. Although specific quantitative results changed, the earlier general conclusions remain valid. The system is moderately insensitive to target gain. A factor of 2.5 change in gain causes <10% change in electricity cost. Increased peak power needed to drive targets poses only a small cost risk but requires many more beamlets be transported to the target. Shortening the required ion range causes both cost and beamlet difficulties. A factor of 4 decrease in the required range at a fixed driver energy increases electricity cost by 43% and raises the number of beamlets from 34 to 330. Finally, the heavy-ion fusion system can accommodate large increases in target costs. While moderate target gain is required, to address the other major uncertainties target design should concentrate on understanding requirements for ion range and peak driver power.