ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
John H. Pendergrass
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 290-332
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25106
Articles are hosted by Taylor and Francis Online.
The requirements, desirable characteristics, trade-offs, and design constraints are discussed for commercial heavy-ion fusion (HIF) reactor plants with induction linear accelerator (Linac) drivers. The trade-offs and the design constraints when the reactor plant requirements and desirable characteristics conflict with those for other HIF power plant systems are described. The reactor plant concepts included in the Heavy-Ion Fusion Systems Assessment (HIFSA) are discussed in relation to these requirements, characteristics, trade-offs, and constraints. Four reactor plant concepts were included in the HIFSA studies to provide large ranges of reactor repetition rate and target yield accommodation (1 to 20 Hz and 150 to 3000 MJ). This permitted thorough exploration of the impact on HIF cost of electricity (COE) of the high repetition rate and efficiency advantages of induction Linacs. Contrary to pre-HIFSA expectations, large plants with large driver repetition rates and multiple reactors are not required for attractive COE: Repetition rates <10 Hz in 1000-MW(electric) one-reactor plants are competitive. More than one HIF reactor plant concept shows promise: The minimum COE estimates for the four concepts in 1000-MW(electric) plants range from 55 to 75 mill/kW-h. Cost and/or technological problems in one part of reactor operating parameter space need not be fatal for HIF: The estimated COE is within 5% of the minimum over wide ranges of the repetition rate and the target yield for a fixed plant size and reactor concept.