ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Robert R. Peterson
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 279-289
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25105
Articles are hosted by Taylor and Francis Online.
The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of heavy-ion fusion (HIF) driven reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 3 × 1012cm-3 at the time of propagation; other propagation schemes may allow densities as high as 1 Torr or more. In some reactor designs, several kilograms of material may be vaporized from the target chamber walls by target-generated X rays, raising the average density in the cavity to 3 × 1018 cm-3 or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the vaporization and condensation of material in the target chambers of HIF reactors. Repetition rates in excess of 1 Hz are possible in the three types of target chambers studied. Means of increasing allowable repetition rates are discussed.