ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Robert R. Peterson
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 279-289
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25105
Articles are hosted by Taylor and Francis Online.
The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of heavy-ion fusion (HIF) driven reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 3 × 1012cm-3 at the time of propagation; other propagation schemes may allow densities as high as 1 Torr or more. In some reactor designs, several kilograms of material may be vaporized from the target chamber walls by target-generated X rays, raising the average density in the cavity to 3 × 1018 cm-3 or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the vaporization and condensation of material in the target chambers of HIF reactors. Repetition rates in excess of 1 Hz are possible in the three types of target chambers studied. Means of increasing allowable repetition rates are discussed.