ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jack Hovingh, Victor O. Brady, Andris Faltens, Denis Keefe, Edward P. Lee
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 255-278
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25104
Articles are hosted by Taylor and Francis Online.
A linear induction accelerator that produces a beam of energetic heavy ions (T ∼ 10 GeV, A ∼ 200 amu) is a prime candidate as a driver for an inertial fusion power plant. Some early perceptions were that heavy-ion driven fusion would not be cost-competitive with other power sources because of the high cost of the accelerators. However, improved understanding of the physics of heavy-ion transport and acceleration (supported by experimental results), combined with advances in accelerator technology, have resulted in accelerator design costs ∼50% of previous estimates. As a result, heavy-ion driven fusion power plants are now projected to be cost-competitive with other conceptual fusion power plants. A brief formulation of transport and acceleration physics is presented here, along with a description of the induction Linac cost optimization code LIACEP. Cost trends are presented and discussed, along with specific cost estimates for several accelerator designs matched to specific inertial fusion target yields. Finally, a cost-effective strategy using heavy-ion induction Linacs in a development scenario for inertial fusion is presented.