ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jack Hovingh, Victor O. Brady, Andris Faltens, Denis Keefe, Edward P. Lee
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 255-278
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25104
Articles are hosted by Taylor and Francis Online.
A linear induction accelerator that produces a beam of energetic heavy ions (T ∼ 10 GeV, A ∼ 200 amu) is a prime candidate as a driver for an inertial fusion power plant. Some early perceptions were that heavy-ion driven fusion would not be cost-competitive with other power sources because of the high cost of the accelerators. However, improved understanding of the physics of heavy-ion transport and acceleration (supported by experimental results), combined with advances in accelerator technology, have resulted in accelerator design costs ∼50% of previous estimates. As a result, heavy-ion driven fusion power plants are now projected to be cost-competitive with other conceptual fusion power plants. A brief formulation of transport and acceleration physics is presented here, along with a description of the induction Linac cost optimization code LIACEP. Cost trends are presented and discussed, along with specific cost estimates for several accelerator designs matched to specific inertial fusion target yields. Finally, a cost-effective strategy using heavy-ion induction Linacs in a development scenario for inertial fusion is presented.