ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
David S. Zuckerman, Daniel E. Driemeyer, Lester M. Waganer, Donald J. Dudziak
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 217-254
Technical Paper | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25103
Articles are hosted by Taylor and Francis Online.
A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW(electric) power level [cost of electricity (COE) ∼50 mill/kW-h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized. The induction Linac driver is still a major component of the total capital cost (43%), but it no longer appears that large 4000-MW(electric), $5 billion (1984) power plants will be required to make the economics of HIF look favorable. More importantly, the results also indicate that there are several different combinations of target and reactor cavity options that lead to COEs within 10% of the overall minimum. The induction Linac's higher efficiency (>20%) is able to compensate for changes in target concept (gain) and cavity type with minimal change in COE. The potential cost reductions and apparent flexibility identified by this study together with the established performance data base from present-day accelerators are leading to renewed interest in induction Linacs for near-term target development applications.