ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Walter M. Polansky
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 201-206
Overview | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25101
Articles are hosted by Taylor and Francis Online.
The U.S. heavy-ion fusion program emphasizes research and development (R&D) on linear induction accelerators. This strategy emerged in 1983, after the U.S. Department of Energy established the heavy-ion fusion accelerator research (HIFAR) program to acquire an appropriate data base for future decisions on heavy-ion inertial fusion. Since that time, HIFAR has advanced the understanding of high-current ion beam transport, and accelerator technology through laboratory-scale experiments and supporting theoretical studies. Although each program element will continue to contribute to the HIFAR data base over the next few years, present accelerator experiments cannot supply sufficient data to adequately satisfy the program objective. Consequently, HIFAR is approaching a transition between the research and accelerator demonstration phases. The history, status, and short-term plans of HIFAR are examined. The program structure, review of the technical status, and introduction of a proposed R&D program that can minimally meet the HIFAR objective are discussed.