ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ronald D. Boyd
Fusion Science and Technology | Volume 13 | Number 1 | January 1988 | Pages 131-142
Technical Paper | Blanket Engineering | doi.org/10.13182/FST88-A25090
Articles are hosted by Taylor and Francis Online.
This work involves steady-state high heat flux removal infusion reactor beam dumps, first walls in compact fusion reactors, and other applications with smooth surfaces and/or irregular coolant channel cross sections. In such applications, the coolant pressure is required to be low (≈ 1.0 MPa), and the coolant channels are moderately long [length-to-diameter ratio (L/D) ≈ 100]. The present experiments have resulted in high heat flux data in a region where only sparse data existed. Subcooled flow boiling measurements were performed for the critical heat flux (CHF), local (axial) variations of the coolant channel's heat transfer coefficients, and pressure drop for horizontal, uniformly heated tubes. The tubes had inside diameters of 0.3 cm, a heated L/D ratio of 96.6, and were made of amzirc (zirconium-copper). The coolant was degassed, deionized water. The exit pressure and the inlet water temperature were held approximately constant at 0.77 MPa and 20°C, respectively. From experiment to experiment, the inlet temperature varied slightly (±1.5°C) from 20° C. The actual measured inlet temperature was used in reducing the experimental data. Measurements of the above quantities were performed for the mass velocity and exit subcooling, varying from 4.6 to 40.6 Mg/m2·s and 30 to 74°C, respectively. For these ranges, (a) the subcooled flow boiling CHF varied from 625 to 4158 W/cm2, (b) the heat transfer coefficients during fully developed nucleate boiling varied from 30 to 400 kW/m2·K (Nusselt number = 150 to 1700), and (c) the overall pressure drop varied from ∼1.75 to 0.9 times the adiabatic pressure drop. For the flow conditions and geometry parameters given above, least-squares equations for the CHF were developed in terms of both the liquid Reynolds number and the exit subcooling. The average percent deviation of the developed equations from the data was <12.5%.